A subpopulation of neurons in the medial prefrontal cortex encodes emotional learning with burst and frequency codes through a dopamine D4 receptor-dependent basolateral amygdala input.
نویسندگان
چکیده
The basolateral nucleus of the amygdala (BLA) and medial prefrontal cortex (mPFC) are involved importantly in the processing and encoding of emotionally salient learned associations. Here, we examined the possible role of the mPFC in the acquisition and encoding of emotional associative learning at the behavioral and single-neuron level. A subpopulation of neurons in the mPFC that received monosynaptic and orthodromic inputs from the BLA demonstrated strong associative responding to odors paired previously with footshock by increasing spontaneous activity and bursting activity. This occurred specifically in response to postconditioning presentations of the footshock-paired odors but not to odors presented in the absence of footshock. In contrast, mPFC neurons that failed to respond to BLA stimulation showed no associative responding. Systemic or intra-mPFC blockade of dopamine (DA) D4 receptors prevented this emotional associative learning in neurons of the mPFC and blocked the expression of olfactory conditioned fear. These results demonstrate that individual neurons in the mPFC that receive a functional input from the BLA actively encode emotional learning and that this process depends on DA D4 receptor stimulation in the mPFC.
منابع مشابه
Cannabinoids Potentiate Emotional Learning Plasticity in Neurons of the Medial Prefrontal Cortex through Basolateral Amygdala Inputs.
Cannabinoids represent one of the most commonly used hallucinogenic drug classes. In addition, cannabis use is a primary risk factor for schizophrenia in susceptible individuals and can potently modulate the emotional salience of sensory stimuli. We report that systemic activation or blockade of cannabinoid CB1 receptors modulates emotional associative learning and memory formation in a subpopu...
متن کاملDopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway.
Projections from the basolateral amygdala (BLA) and dopamine (DA) input from the ventral tegmental area (VTA) converge in the medial prefrontal cortex (mPFC), forming a neural circuit implicated in certain cognitive and emotional processes. However, the role that DA plays in modulating activity in the BLA-mPFC pathway is unknown. The present study investigated the mechanisms by which DA modulat...
متن کاملSpecific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex123
Adjacent prelimbic (PL) and infralimbic (IL) regions in the medial prefrontal cortex have distinct roles in emotional learning. A complete mechanistic understanding underlying this dichotomy remains unclear. Here we explored targeting of specific PL and IL neurons by the basolateral amygdala (BLA), a limbic structure pivotal in pain and fear processing. In mice, we used retrograde labeling, bra...
متن کاملSelective activation of medial prefrontal-to-accumbens projection neurons by amygdala stimulation and Pavlovian conditioned stimuli.
Medial prefrontal cortex (mPFC) neurons respond to Pavlovian conditioned stimuli, and these responses depend on input from the basolateral amygdala (BLA). In this study, we examined the mPFC efferent circuits mediating conditioned responding by testing whether specific subsets of mPFC projection neurons receive BLA input and respond to conditioned stimuli. In urethane-anesthetized rats, we iden...
متن کاملprelimbic of medial prefrontal cortex GABA modulation through testosterone on spatial learning and memory
Prefrontal cortex (PFC) is involved in multiple functions including attentional , spatial orientation, short and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of test...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 26 شماره
صفحات -
تاریخ انتشار 2005